Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Infectious Microbes and Diseases ; 3(4):187-197, 2021.
Article in English | EMBASE | ID: covidwho-20232813

ABSTRACT

CD4+CD25+FOXP3+regulatory T cells (Tregs) contribute to the maintenance of immune homeostasis and tolerance in the body. The expression levels and functional stability of FOXP3 control the function and plasticity of Tregs. Tregs critically impact infectious diseases, especially by regulating the threshold of immune responses to pathogenic microorganisms. The functional regulatory mechanism and cell-specific surface markers of Tregs in different tissues and inflammatory microenvironments have been investigated in depth, which can provide novel ideas and strategies for immunotherapies targeting infectious diseases.Copyright © 2021. All rights reserved.

2.
Clinical Immunology: Principles and Practice, Sixth Edition ; : 320-330, 2022.
Article in English | Scopus | ID: covidwho-2325088

ABSTRACT

Virus infections continue to pose a substantial threat to human health. A prime example is the ongoing 2019 coronavirus pandemic caused by the novel virus SARS-CoV-2. Unraveling the intricacies of immune defenses against viruses should lead to improved control of infections through the design of new vaccines and therapies. Our understanding of the fundamental cellular and molecular mechanisms involved in the immune system's response to virus infection has improved substantially in recent years. This wealth of new information and the promise of new insight from systems biology approaches continue to drive research in this field. Such knowledge has revealed why viruses sometimes induce immune dysfunction or trigger disastrous pathology and has paved the way for new therapies being tested against chronic and emerging infections. In this chapter, we briefly summarize the general concepts in immunity to virus infections and highlight some of the key challenges remaining for the future. Virus infections continue to pose a substantial threat to human health, and many cannot be controlled effectively with current vaccines or antiviral approaches. © 2023 Elsevier Ltd. All rights reserved.

3.
Infektsiya I Immunitet ; 12(4):651-658, 2022.
Article in English | Web of Science | ID: covidwho-2309302

ABSTRACT

Here, we review thematic publications in available literature sources of the databases PubMed, Scopus, Web of Science, eLibrary, 49 of which were dated of the years 1997-2022. Analysis of such reports is aimed at assessing features of cytokine storm-induced hyperinflammatory reaction with signs of immunosuppression accompanied by pronounced lymphopenia and lowered count of CD4(+)T helpers during severe COVID-19. The prognostic factor for unfavorable prognosis was based on the marker of systemic inflammatory reaction correlating with the disease severity - the soluble IL-2 receptor as well as the neutrophil-to-lymphocyte ratio and the lymphocyte subset imbalance. An immunosuppressive therapy of severe forms of COVID-19, aimed at weakening the inflammatory response, exacerbates immune dysfunction by suppressing the T cell function, mainly due to Th1 lymphocytes involved in recognizing and eliminating intracellular pathogens particularly viruses. Upon that, cell-mediated immunity becomes compromised that relies on cytotoxic T-lymphocytes, natural killer cells and macrophages. Timely and targeted immunocorrection is required to prevent or reduce the immunosuppression that accompanies a severe disease course and leads to serious and prolonged complications, as well as to association of secondary infections. In fight against the cytokine storm, it is important not to miss a time point of developing immunosuppressive condition that transitions into immunoparalysis as follows from recent publications covering the tactics of treating immune-mediated complications of coronavirus infection. The review discusses opportunities for immunosuppressive therapy along with glucocorticosteroids and monoclonal antibodies blocking IL-6 or cognate receptors. Studies using mesenchymal stem cells (MSCs) to reduce systemic inflammatory response at COVID-19 are outlined in the review. The use of antigen-specific Treg and their combinations with antagonists of tumor necrosis factor-alpha (TNF alpha), interferon-gamma (IFN gamma) as well as low-dose IL-2 in patients with SARS-CoV-2 infection were analyzed. The prognostic perspectives for CAR-T cells and CAR-NK cells technology have been considered as novel therapeutic approaches aimed at "training" effector cells to recognize the surface SARS-CoV-2 virus spike-like (S) protein. The feasibility of a therapeutic approach is also emphasized by comparatively analyzed of efficacy of using IL-7 or IL-15 during lymphopenia in patients with COVID-19. Here, side effects complicating immunocorrection come to the fore. Critical evaluation of corrected immunosuppressive conditions in patients with COVID-19 in the post-COVID-19 period by using low-dose IL-2 therapy revealed its ability to repair cellular immune response. As a result, a low-dose IL-2 therapy is recommended as a cytokine replacement therapy in such patients with COVID-19 during hyper-to-hypo-inflammatory phase transition in immune response.

4.
Eur J Haematol ; 110(4): 396-406, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2265270

ABSTRACT

OBJECTIVES: The immune dysregulation during SARS-CoV-2 has the potential to worsen immune homeostasis after recovery. Patients with hematological malignancies with COVID-19 have changes both in the innate and adaptive immune responses. Little is known about the severity of immune dysfunction following recovery from COVID-19 in hematological patients. METHODS: Here, we performed a comprehensive analysis of the lymphocyte subsets in peripheral blood mononuclear cells by FACS Canto II in 55 patients, including 42 with hematological malignancies 4-6 weeks after COVID-19. RESULTS: Hematological COVID-19 convalescents had deep reduction in CD3+ T cells, including helper T cells (CD3 + CD4+), naïve helper T cells (CD3 + CD4 + CD45RA+), and memory CD4+ T cells among with extremely low levels of Treg cells and decreased expression of both TCRα/ß and TCRγ/δ. Severe immune dysregulation in hematological convalescents was expressed by increased activation of T lymphocytes, both as elevated levels of activated T cells (CD3 + HLA-DR+) and activated cytotoxic T cells (CD3 + CD8 + HLA-DR+). CONCLUSIONS: Our findings showed a profound impairment of the adaptive immune response in hematological convalescents which might be a result of persistent activation of T cells. Convalescents with lymphoid malignancies showed more pronounced depletion of key T lymphocytes subpopulations in creating an effective adaptive response and immune memory.


Subject(s)
COVID-19 , Hematologic Neoplasms , Humans , Leukocytes, Mononuclear , SARS-CoV-2 , Lymphocyte Activation , HLA-DR Antigens/analysis , Adaptive Immunity
5.
Front Immunol ; 14: 1078922, 2023.
Article in English | MEDLINE | ID: covidwho-2256652

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by a range of symptoms in which host immune response have been associated with disease progression. However, the putative role of regulatory T cells (Tregs) in determining COVID-19 outcomes has not been thoroughly investigated. Here, we compared peripheral Tregs between volunteers not previously infected with SARS-CoV-2 (healthy control [HC]) and volunteers who recovered from mild (Mild Recovered) and severe (Severe Recovered) COVID-19. Peripheral blood mononuclear cells (PBMC) were stimulated with SARS-CoV-2 synthetic peptides (Pool Spike CoV-2 and Pool CoV-2) or staphylococcal enterotoxin B (SEB). Results of a multicolor flow cytometric assay showed higher Treg frequency and expression of IL-10, IL-17, perforin, granzyme B, PD-1, and CD39/CD73 co-expression in Treg among the PBMC from the Mild Recovered group than in the Severe Recovered or HC groups for certain SARS-CoV-2 related stimulus. Moreover, Mild Recovered unstimulated samples presented a higher Tregs frequency and expression of IL-10 and granzyme B than did that of HC. Compared with Pool CoV-2 stimuli, Pool Spike CoV-2 reduced IL-10 expression and improved PD-1 expression in Tregs from volunteers in the Mild Recovered group. Interestingly, Pool Spike CoV-2 elicited a decrease in Treg IL-17+ frequency in the Severe Recovered group. In HC, the expression of latency-associated peptide (LAP) and cytotoxic granule co-expression by Tregs was higher in Pool CoV-2 stimulated samples. While Pool Spike CoV-2 stimulation reduced the frequency of IL-10+ and CTLA-4+ Tregs in PBMC from volunteers in the Mild Recovered group who had not experienced certain symptoms, higher levels of perforin and perforin+granzyme B+ co-expression by Tregs were found in the Mild Recovered group in volunteers who had experienced dyspnea. Finally, we found differential expression of CD39 and CD73 among volunteers in the Mild Recovered group between those who had and had not experienced musculoskeletal pain. Collectively, our study suggests that changes in the immunosuppressive repertoire of Tregs can influence the development of a distinct COVID-19 clinical profile, revealing that a possible modulation of Tregs exists among volunteers of the Mild Recovered group between those who did and did not develop certain symptoms, leading to mild disease.


Subject(s)
COVID-19 , T-Lymphocytes, Regulatory , Humans , COVID-19/metabolism , Interleukin-10/metabolism , Granzymes/metabolism , Interleukin-17/metabolism , Leukocytes, Mononuclear , Perforin/metabolism , Programmed Cell Death 1 Receptor/metabolism , SARS-CoV-2
6.
Immunology ; 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2260941

ABSTRACT

Severe cases of COVID-19 present hyperinflammatory condition that can be fatal. Little is known about the role of regulatory responses in SARS-CoV-2 infection. In this study, we evaluated the phenotype of regulatory T cells in the blood (peripheral blood mononuclear cell) and the lungs (broncho-alveolar) of adult patients with severe COVID-19 under invasive mechanical ventilation. Our results show important dynamic variation on Treg cells phenotype during COVID-19 with changes in number and functional parameters from the day of intubation (Day 1 of intensive care unit admission) to Day 7. We observed that compared with surviving patients, non-survivors presented lower numbers of Treg cells in the blood. In addition, lung Tregs of non-survivors also displayed higher PD1 and lower FOXP3 expressions suggesting dysfunctional phenotype. Further signs of Treg dysregulation were observed in non-survivors such as limited production of IL-10 in the lungs and higher production of IL-17A in the blood and in the lungs, which were associated with increased PD1 expression. These findings were also associated with lower pulmonary levels of Treg-stimulating factors like TNF and IL-2. Tregs in the blood and lungs are profoundly dysfunctional in non-surviving COVID-19 patients.

7.
Biomedicines ; 11(2)2023 Feb 10.
Article in English | MEDLINE | ID: covidwho-2232217

ABSTRACT

New-generation mRNA and adenovirus vectored vaccines against SARS-CoV-2 spike protein are endowed with immunogenic, inflammatory and immunomodulatory properties. Recently, BioNTech developed a noninflammatory tolerogenic mRNA vaccine (MOGm1Ψ) that induces in mice robust expansion of antigen-specific regulatory T (Treg) cells. The Pfizer/BioNTech BNT162b2 mRNA vaccine against SARS-CoV-2 is identical to MOGm1Ψ except for the lipid carrier, which differs for containing lipid nanoparticles rather than lipoplex. Here we report that vaccination with BNT162b2 led to an increase in the frequency and absolute count of CD4posCD25highCD127low putative Treg cells; in sharp contrast, vaccination with the adenovirus-vectored ChAdOx1 nCoV-19 vaccine led to a significant decrease of CD4posCD25high cells. This pilot study is very preliminary, suffers from important limitations and, frustratingly, very hardly can be refined in Italy because of the >90% vaccination coverage. Thus, the provocative perspective that BNT162b2 and MOGm1Ψ may share the capacity to promote expansion of Treg cells deserves confirmatory studies in other settings.

8.
Front Immunol ; 13: 1070994, 2022.
Article in English | MEDLINE | ID: covidwho-2198912

ABSTRACT

Background: Recovery from coronavirus disease 2019 (COVID-19) can be impaired by the persistence of symptoms or new-onset health complications, commonly referred to as Long COVID. In a subset of patients, Long COVID is associated with immune system perturbations of unknown etiology, which could be related to compromised immunoregulatory mechanisms. Objective: The objective of this scoping review was to summarize the existing literature regarding the frequency and functionality of Tregs in convalescent COVID-19 patients and to explore indications for their potential involvement in the development of Long COVID. Design: A systematic search of studies investigating Tregs during COVID-19 convalescence was conducted on MEDLINE (via Pubmed) and Web of Science. Results: The literature search yielded 17 relevant studies, of which three included a distinct cohort of patients with Long COVID. The reviewed studies suggest that the Treg population of COVID-19 patients can reconstitute quantitatively and functionally during recovery. However, the comparison between recovered and seronegative controls revealed that an infection-induced dysregulation of the Treg compartment can be sustained for at least several months. The small number of studies investigating Tregs in Long COVID allowed no firm conclusions to be drawn about their involvement in the syndrome's etiology. Yet, even almost one year post-infection Long COVID patients exhibit significantly altered proportions of Tregs within the CD4+ T cell population. Conclusions: Persistent alterations in cell frequency in Long COVID patients indicate that Treg dysregulation might be linked to immune system-associated sequelae. Future studies should aim to address the association of Treg adaptations with different symptom clusters and blood parameters beyond the sole quantification of cell frequencies while adhering to consensualized phenotyping strategies.


Subject(s)
COVID-19 , Humans , CD4-Positive T-Lymphocytes , Post-Acute COVID-19 Syndrome , T-Lymphocytes, Regulatory
9.
Journal of Men's Health ; 18(10), 2022.
Article in English | Web of Science | ID: covidwho-2100930

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus responsible for the COVID-19 pandemic. The viral protein of SARS-CoV-2, spike protein (SP), mediates entry into host cells, contributing to pathogenesis of COVID-19. Prostate cancer is the most common cancer among men in the United States. Inducible T-cell costimulator ligand (ICOSL) and intercellular cell adhesion molecule 2 (ICAM-2) are expressed in cancer cells and their roles in cancer growth remain controversial. It is unknown if SP can affect the expression of ICAM-2 or ICOSL in prostate cancer. This study investigated the effects of SARS-CoV-2 SP on the expression of ICAM-2 and ICOSL and the time-dependent effect of SP on growth and survival of prostate cancer cells. Methods: The effect of SARS-CoV-2 SP on the survival of a widely-used prostate cancer cell line, LNCaP, was assessed using clonogenic cell survival assay and quick cell proliferation assay. Reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) were performed to investigate the expression of ICAM-2 and ICOSL. The survival of an additional prostate cancer cell line, PC-3, was also evaluated by clonogenic survival assay. Results: After 3 days, a significant decrease in the percentage of colonies in LNCaP cells treated with SP was found, which was paralleled by a decrease in optical density (OD) value in LNCaP cells in the presence of SP. A significant decrease in the percentage of colonies treated with SP was also found in PC-3 cells evaluated by clonogenic survival assay. In addition, the mRNA expression of ICAM-2 was lower, whereas the mRNA expression of ICOSL was higher in SP-treated LNCaP cells. This was supported by protein expressions for ICAM-2 and ICOSL evaluated with IHC. Conclusions: In LNCaP cells, SARS-CoV-2 SP downregulates the expression of ICAM-2 but upregulates the expression of ICOSL. SARS-CoV-2 SP inhibits growth of prostate cancer cells in a time-dependent manner. Further studies are needed to fully address the roles of ICAM-2 and ICOSL in the inhibition prostate cancer growth by SARS-CoV-2 SP.

10.
Pharmaceutics ; 14(9)2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-2066322

ABSTRACT

Conventional therapies for immune-mediated diseases, including autoimmune disorders, transplant reactions, and allergies, have undergone a radical evolution in the last few decades; however, they are still not specific enough to avoid widespread immunosuppression. The idea that vaccine usage could be extended beyond its traditional immunogenic function by encompassing the ability of vaccines to induce antigen-specific tolerance may revolutionize preventive and therapeutic strategies in several clinical fields that deal with immune-mediated disorders. This approach has been supported by improved data relating to the several mechanisms involved in controlling unwanted immune responses and allowing peripheral tolerance. Given these premises, several approaches have been developed to induce peripheral tolerance against the antigens that are involved in the pathological immune response, including allergens, autoantigens, and alloantigens. Technological innovations, such as nucleic acid manipulation and the advent of micro- and nanoparticles, have further supported these novel preventive and therapeutic approaches. This review focuses on the main strategies used in the development of tolerogenic vaccines, including the technological issues used in their design and the role of "inverse adjuvants". Even though most studies are still limited to the preclinical field, the enthusiasm generated by their results has prompted some initial clinical trials, and they show great promise for the future management of immune-mediated pathological conditions.

11.
EClinicalMedicine ; 51: 101604, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2049124

ABSTRACT

Background: A potential immunotherapeutic role for AZD1656 (a glucokinase activator) in the treatment of COVID-19 was hypothesized. The ARCADIA trial investigated the safety and efficacy of AZD1656 in diabetic patients admitted to hospital with COVID-19. Methods: The ARCADIA trial was a Phase II randomised, double-blind, placebo-controlled clinical trial. Adult diabetic patients, admitted with COVID-19, were recruited at 28 hospitals in the UK, Romania and Czech Republic and randomly assigned (1:1) to receive AZD1656 tablets (100mg twice a day), or matched placebo, for up to 21 days, in addition to usual care. All involved were masked to treatment allocation. The primary endpoint was clinical improvement measured at Day 14. The Full Analysis Set (FAS) included all patients who received at least one dose of assigned treatment. ARCADIA is complete and registered with ClinicalTrials.gov (NCT04516759). Findings: Between 29 September 2020 to 16 April 2021, 170 patients were screened and 156 patients were randomised, three of whom did not commence treatment. Of the remaining 153, 80 were assigned to AZD1656 and 73 were assigned to placebo and included in the Full Analysis Set (FAS). The primary analysis showed no statistically significant difference between groups (AZD1656: 76·3%; Placebo: 69·9%, p=0·19). There was no difference in the number of adverse events between groups (AZD1656: 35·7%; Placebo: 33·3%). Mortality was lower in the AZD1656 group compared to the placebo group (AZD1656: four (5%); Placebo: nine (12·3%), p=0·090)). At Day 7 there were zero deaths in the AZD1656 group compared to six deaths in the placebo group (p=0·011, post hoc). A difference between groups in time to hospital discharge was also seen (p=0·16). Immunophenotyping data suggested that AZD1656-treated patients had a less pro-inflammatory immune response and a better adaptive immune response than those treated with placebo. Interpretation: Although the trial did not achieve its primary endpoint, AZD1656 was associated with a decrease in deaths and a reduction in the duration of hospitalisation, as compared to Placebo. Immunophenotyping and immunochemistry indicated an immunomodulatory effect of AZD1656. The trial suggests a beneficial therapeutic effect of AZD1656 and identifies a new therapeutic concept: small molecule activation of endogenous homeostatic immune cells which themselves become the therapeutic agent within the body. Phase 2 trials of this size carry the risk of false positive results and confirmation of these results in a larger clinical trial is now required. Funding: UK Research and Innovation (UKRI) 'Innovate UK' programme and Excalibur Medicines Ltd.

12.
Exp Hematol Oncol ; 11(1): 48, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2038943

ABSTRACT

BACKGROUND: Primary immune thrombocytopenia (ITP) is an autoimmune disease. Some ITP patients are associated with pathogen infection undetected with conventional technologies. Investigating the changes of T cells and potential metabolic mechanism are important for better understanding of ITP. METHODS: The study enrolled 75 newly diagnosed ITP patients. The pathogens of patients were detected by metagenomic next-generation sequencing (mNGS). Plasma lipids were measured by liquid chromatography-mass spectrometry (LC-MS). CD4 T cell and CD8 T cell were analyzed using flow cytometry. Mitochondrial reactive oxygen species (ROS) and mitochondrial membrane potential were measured by flow cytometry. Seahorse XF real-time ATP rate assay was used to investigate the change of cellular metabolism. RESULTS: Positive plasma pathogens were detected in seven ITP patients. Of them, 5 (71.4%) positive pathogen-ITP patients were no response (NR) after first-line treatment with corticosteroids. Regulatory T cells (Tregs) increased significantly in positive pathogen-ITP patients compared to negative pathogen-ITP patients and healthy controls (HC). Mitochondrial membrane potential of Th17 and Tregs were decreased in positive pathogen-ITP and negative pathogen-ITP patients, compared to HC (all p < 0.05). The overall metabolism flux of positive pathogen-ITP patients was decreased, as compared to HC (p = 0.004), of them a higher proportion of glycolysis-derived ATP and a smaller proportion of oxidative phosphorylation (OXPHOS)-derived ATP were found in Tregs. The ATP rate index of Tregs was decreased significantly in positive pathogen-ITP patients compared to negative pathogen-ITP patients and HC (p < 0.05). CONCLUSIONS: Impaired mitochondria function of Tregs in positive pathogen-ITP patients caused a decrease of OXPHOS-derived ATP and overall metabolism flux that might be the cause of steroid resistance in ITP patients.

13.
Turk J Med Sci ; 52(4): 888-898, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1998219

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has a wide clinical spectrum from asymptomatic to mild, moderate, and severe cases. There are still many unknowns about the role of immunoregulatory mechanisms in COVID-19. We aimed to study regulatory T cells (Tregs) and B cell subsets and evaluate their correlations with severity of COVID-19. METHODS: In total, 50 patients with COVID-19 confirmed by PCR (mean age = 49.9 ± 12.8 years) and 40 healthy control (mean age = 47.9 ± 14.7 years) were included in this study. The patients were classified as 14 mild (median age = 35.5 [24-73] years), 22 moderate (median age = 51.5 [28-67] years) and 14 severe (median age = 55.5 [42-67] years). Within 24 h of admission, flow cytometry was used to assess the lymphocyte subsets, Tregs and Bregs without receiving any relevant medication. RESULTS: In all patients with COVID-19, the proportion of CD3+CD8+ T cells was reduced (p = 0.004) and the CD8+ Tregs were increased compared with control (p = 0.001). While the levels of regulatory B cells, plasmablasts, and mature naive B cells were found to be significantly high, primarily memory B-cell levels were low in all patients compared with controls (p < 0.05). Total CD3+ T cells were negatively correlated with the length of stay in the hospital (r = -0.286, p = 0.044). DISCUSSION: The changes in T and B cell subsets may show the dysregulation in the immunity of patients with COVID-19. In this context, the association between CD8+ Tregs and COVID-19 severity may help clinicians to predict severe and fatal COVID-19 in hospitalized patients.


Subject(s)
B-Lymphocyte Subsets , COVID-19 , Humans , Adult , Middle Aged , T-Lymphocytes, Regulatory , Lymphocyte Count , CD8-Positive T-Lymphocytes
14.
Front Microbiol ; 13: 918009, 2022.
Article in English | MEDLINE | ID: covidwho-1979049

ABSTRACT

The initial infection by the obligate intracellular bacillus Mycobacterium leprae evolves to leprosy in a small subset of the infected individuals. Transmission is believed to occur mainly by exposure to bacilli present in aerosols expelled by infected individuals with high bacillary load. Mycobacterium leprae-specific DNA has been detected in the blood of asymptomatic household contacts of leprosy patients years before active disease onset, suggesting that, following infection, the bacterium reaches the lymphatic drainage and the blood of at least some individuals. The lower temperature and availability of protected microenvironments may provide the initial conditions for the survival of the bacillus in the airways and skin. A subset of skin-resident macrophages and the Schwann cells of peripheral nerves, two M. leprae permissive cells, may protect M. leprae from effector cells in the initial phase of the infection. The interaction of M. leprae with these cells induces metabolic changes, including the formation of lipid droplets, that are associated with macrophage M2 phenotype and the production of mediators that facilitate the differentiation of specific T cells for M. leprae-expressed antigens to a memory regulatory phenotype. Here, we discuss the possible initials steps of M. leprae infection that may lead to active disease onset, mainly focusing on events prior to the manifestation of the established clinical forms of leprosy. We hypothesize that the progressive differentiation of T cells to the Tregs phenotype inhibits effector function against the bacillus, allowing an increase in the bacillary load and evolution of the infection to active disease. Epigenetic and metabolic mechanisms described in other chronic inflammatory diseases are evaluated for potential application to the understanding of leprosy pathogenesis. A potential role for post-exposure prophylaxis of leprosy in reducing M. leprae-induced anti-inflammatory mediators and, in consequence, Treg/T effector ratios is proposed.

15.
Viruses ; 14(8)2022 07 30.
Article in English | MEDLINE | ID: covidwho-1969508

ABSTRACT

Depending on the intensity and duration of SARS-CoV-2 infection, the host immune response plays a significant role in immunological protection. Here, we studied the regulatory T-cell (Treg) response in relation to kinetic change and cytokine production in patients with mild COVID-19. Nineteen SARS-CoV-2-positive patients were recruited, and blood was collected at four time points, i.e., seven days after admission, after discharge, and one and three months after recovery. CD3+CD4+CD25+CD127low was marked as the Treg population, with IL-10 and TGF-ß used to study cytokine-producing Tregs. IFN-γ-producing CD8+ T cells were observed for an effector response. The Treg percentage in patients with mild COVID-19 increased during hospitalization compared to during the recovery period. Peripheral blood mononuclear cells (PBMCs) were quantified, and the T-cell response was characterized by re-stimulation with S1 and N peptides. IL-10 and TGF-ß were produced by CD25+CD127low T cells during the active infection phase, especially with N peptide stimulation. Compared to N peptide stimulation, S1 peptide stimulation provided superior IFN-γ-secreting CD8+ T-cell responses. Our results suggest that while IFN-γ+CD8+ T cells confer antiviral immunity, cytokine-producing Tregs may have a substantial role in regulating inflammatory responses in mild SARS-CoV-2 infection. Novel vaccine development may also consider enhancing T-cell repertoires.


Subject(s)
COVID-19 , T-Lymphocytes, Regulatory , CD8-Positive T-Lymphocytes , Cytokines , Humans , Interleukin-10 , Leukocytes, Mononuclear , SARS-CoV-2 , Transforming Growth Factor beta
16.
Front Immunol ; 13: 886822, 2022.
Article in English | MEDLINE | ID: covidwho-1957156

ABSTRACT

Immunometabolism has been the focus of extensive research over the last years, especially in terms of augmenting anti-tumor immune responses. Regulatory T cells (Tregs) are a subset of CD4+ T cells, which have been known for their immunosuppressive roles in various conditions including anti-tumor immune responses. Even though several studies aimed to target Tregs in the tumor microenvironment (TME), such approaches generally result in the inhibition of the Tregs non-specifically, which may cause immunopathologies such as autoimmunity. Therefore, specifically targeting the Tregs in the TME would be vital in terms of achieving a successful and specific treatment. Recently, an association between Tregs and isoleucine, which represents one type of branched-chain amino acids (BCAAs), has been demonstrated. The presence of isoleucine seems to affect majorly Tregs, rather than conventional T cells. Considering the fact that Tregs bear several distinct metabolic features in the TME, targeting their immunometabolic pathways may be a rational approach. In this Review, we provide a general overview on the potential distinct metabolic features of T cells, especially focusing on BCAAs in Tregs as well as in their subtypes.


Subject(s)
Amino Acids, Branched-Chain , Neoplasms , Amino Acids, Branched-Chain/metabolism , Humans , Isoleucine/pharmacology , T-Lymphocytes, Regulatory , Tumor Microenvironment
17.
Front Cell Infect Microbiol ; 12: 893044, 2022.
Article in English | MEDLINE | ID: covidwho-1952262

ABSTRACT

Severe COVID-19 in children is rare, but the reasons underlying are unclear. Profound alterations in T cell responses have been well characterized in the course of adult severe COVID-19, but little is known about the T cell function in children with COVID-19. Here, we made three major observations in a cohort of symptomatic children with acute COVID-19: 1) a reduced frequency of circulating FoxP3+ regulatory T cells, 2) the prevalence of a TH17 polarizing microenvironment characterized by high plasma levels of IL-6, IL-23, and IL17A, and an increased frequency of CD4+ T cells expressing ROR-γt, the master regulator of TH17 development, and 3) high plasma levels of ATP together with an increased expression of the P2X7 receptor. Moreover, that plasma levels of ATP displayed an inverse correlation with the frequency of regulatory T cells but a positive correlation with the frequency of CD4+ T cells positive for the expression of ROR-γt. Collectively, our data indicate an imbalance in CD4+ T cell profiles during pediatric COVID-19 that might favor the course of inflammatory processes. This finding also suggests a possible role for the extracellular ATP in the acquisition of an inflammatory signature by the T cell compartment offering a novel understanding of the involved mechanisms.


Subject(s)
COVID-19 , Nuclear Receptor Subfamily 1, Group F, Member 3 , Adenosine Triphosphate/metabolism , Adult , CD4-Positive T-Lymphocytes/metabolism , Child , Humans , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , T-Lymphocytes, Regulatory , Th17 Cells
18.
ESMO Open ; 7(3): 100446, 2022 06.
Article in English | MEDLINE | ID: covidwho-1895037

ABSTRACT

BACKGROUND: The SAKK 17/16 study showed promising efficacy data with lurbinectedin as second- or third-line palliative therapy in malignant pleural mesothelioma. Here, we evaluated long-term outcome and analyzed the impact of lurbinectedin monotherapy on the tumor microenvironment at the cellular and molecular level to predict outcomes. MATERIAL AND METHODS: Forty-two patients were treated with lurbinectedin in this single-arm study. Twenty-nine samples were available at baseline, and seven additional matched samples at day one of cycle two of treatment. Survival curves and rates between groups were compared using the log-rank test and Kaplan-Meier method. Statistical significance was set at P value <0.05. RESULTS: Updated median overall survival (OS) was slightly increased to 11.5 months [95% confidence interval (CI) 8.8-13.8 months]. Thirty-six patients (85%) had died. The OS rate at 12 and 18 months was 47% (95% CI 32.1% to 61.6%) and 31% (95% CI 17.8% to 45.0%), respectively. Median progression-free survival was 4.1 months (95% CI 2.6-5.5 months). No new safety signals were observed. Patients with lower frequencies of regulatory T cells, as well as lower tumor-associated macrophages (TAMs) at baseline, had a better OS. Comparing matched biopsies, a decrease of M2 macrophages was observed in five out of seven patients after exposure to lurbinectedin, and two out of four patients showed increased CD8+ T-cell infiltrates in tumor. DISCUSSION: Lurbinectedin continues to be active in patients with progressing malignant pleural mesothelioma. According to our very small sample size, we hypothesize that baseline TAMs and regulatory T cells are associated with survival. Lurbinectedin seems to inhibit conversion of TAMs to M2 phenotype in humans.


Subject(s)
Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Carbolines , Heterocyclic Compounds, 4 or More Rings , Humans , Lung Neoplasms/pathology , Mesothelioma/drug therapy , Mesothelioma/pathology , Palliative Care , Tumor Microenvironment
19.
iPSCs for Studying Infectious Diseases ; : 31-46, 2021.
Article in English | Scopus | ID: covidwho-1803274

ABSTRACT

Intracranial inoculation of susceptible strains of mice with the neuroadapted JHM strain of mouse hepatitis virus (JHMV, a member of the Coronaviridae family of viruses) results in an acute encephalomyelitis characterized by widespread growth of virus in astrocytes, microglia, and oligodendrocytes with relative sparing of neurons. Virus-specific CD4+ and CD8+ T cells infiltrate into the central nervous system in response to infection and control viral replication through secretion of interferon gamma as well as cytolytic activity. Nonetheless, virus persists in white matter tracts, and animals develop an immune-mediated demyelinating disease in which both T cells and macrophages amplify white matter damage. For the past decade, we have explored the therapeutic potential of human neural progenitor cells derived from pluripotent stem cells in promoting clinical recovery associated with remyelination of demyelinated axons following intraspinal transplantation. This chapter highlights recent studies from our laboratories demonstrating that tissue repair is associated with the emergence of regulatory T cells in response to transplantation of NPCs. © 2021 Elsevier Inc. All rights reserved.

20.
J Transl Autoimmun ; 5: 100154, 2022.
Article in English | MEDLINE | ID: covidwho-1783601

ABSTRACT

The clinical and immunological spectrum of acute and post-active COVID-19 syndrome overlaps with criteria used to characterize autoimmune diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Indeed, following SARS-Cov2 infection, the innate immune response is altered with an initial delayed production of interferon type I (IFN-I), while the NF-kappa B and inflammasome pathways are activated. In lung and digestive tissues, an alternative and extrafollicular immune response against SARS-Cov2 takes place with, consequently, an altered humoral and memory T cell response leading to breakdown of tolerance with the emergence of autoantibodies. However, the risk of developing severe COVID-19 among SLE and RA patients did not exceed the general population except in those having pre-existing neutralizing autoantibodies against IFN-I. Treatment discontinuation rather than COVID-19 infection or vaccination increases the risk of developing flares. Last but not least, a limited number of case reports of individuals having developed SLE or RA following COVID-19 infection/vaccination have been reported. Altogether, the SARS-Cov2 pandemic represents an unique opportunity to investigate the dangerous interplay between the immune response against infectious agents and autoimmunity, and to better understand the triggering role of infection as a risk factor in autoimmune and chronic inflammatory disease development.

SELECTION OF CITATIONS
SEARCH DETAIL